PHYSICAL SOIL PROPERTIES
Physical Soil Properties

This table shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swelling potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/3- or 1/10-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swelling potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates in the table are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity (Ksat) is considered in the design of soil drainage systems and septic tank absorption fields.
Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in the table as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and Ksat. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook."
Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Reference:
Report—Physical Soil Properties

Physical Soil Properties—Santa Cruz County, California

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Moist bulk density</th>
<th>Saturated hydraulic conductivity</th>
<th>Available water capacity</th>
<th>Linear extensibility</th>
<th>Organic matter</th>
<th>Erosion factors</th>
<th>Wind erodibility</th>
<th>Wind erodibility index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In</td>
<td>Pct</td>
<td>Pct</td>
<td>g/cc</td>
<td>micro m/sec</td>
<td>In/In</td>
<td>Pct</td>
<td>Pct</td>
<td>Kw</td>
<td>Kf</td>
<td>T</td>
</tr>
<tr>
<td>115—Ben Lomond-Felton complex, 50 to 75 percent slopes</td>
<td></td>
</tr>
<tr>
<td>Ben lomond</td>
<td>0-19</td>
<td>—</td>
<td>—</td>
<td>10-18</td>
<td>1.35-1.45</td>
<td>14.00-42.00</td>
<td>0.10-0.12</td>
<td>0.0-2.9</td>
<td>1.0-2.0</td>
<td>.20</td>
<td>.24</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>19-46</td>
<td>—</td>
<td>—</td>
<td>10-18</td>
<td>1.35-1.50</td>
<td>14.00-42.00</td>
<td>0.09-0.15</td>
<td>0.0-2.9</td>
<td>0.5-1.0</td>
<td>.24</td>
<td>.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46-50</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Felton</td>
<td>0-11</td>
<td>—</td>
<td>—</td>
<td>12-20</td>
<td>1.35-1.45</td>
<td>14.00-42.00</td>
<td>0.11-0.13</td>
<td>0.0-2.9</td>
<td>0.5-1.0</td>
<td>.28</td>
<td>.32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>11-43</td>
<td>—</td>
<td>—</td>
<td>27-35</td>
<td>1.25-1.45</td>
<td>1.40-4.00</td>
<td>0.15-0.19</td>
<td>0.0-5.9</td>
<td>0.5-1.0</td>
<td>.32</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43-63</td>
<td>—</td>
<td>—</td>
<td>15-30</td>
<td>1.40-1.55</td>
<td>0.42-14.00</td>
<td>0.12-0.14</td>
<td>0.0-2.9</td>
<td>0.5-1.0</td>
<td>.32</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>63-67</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>135—Elkhorn sandy loam, 15 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>Elkhorn</td>
<td>0-21</td>
<td>—</td>
<td>—</td>
<td>10-20</td>
<td>1.45-1.55</td>
<td>14.00-42.00</td>
<td>0.10-0.14</td>
<td>0.0-2.9</td>
<td>2.0-6.0</td>
<td>.17</td>
<td>.20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21-61</td>
<td>—</td>
<td>—</td>
<td>20-35</td>
<td>1.40-1.50</td>
<td>1.40-4.00</td>
<td>0.16-0.18</td>
<td>3.0-5.9</td>
<td>0.5-1.0</td>
<td>.24</td>
<td>.28</td>
<td></td>
</tr>
<tr>
<td>159—Pfeiffer gravelly sandy loam, 15 to 30 percent slopes</td>
<td></td>
</tr>
<tr>
<td>Pfeiffer</td>
<td>0-38</td>
<td>—</td>
<td>—</td>
<td>8-18</td>
<td>1.45-1.55</td>
<td>14.00-42.00</td>
<td>0.07-0.10</td>
<td>0.0-2.9</td>
<td>1.0-3.0</td>
<td>.10</td>
<td>.20</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>38-66</td>
<td>—</td>
<td>—</td>
<td>8-18</td>
<td>1.50-1.60</td>
<td>14.00-42.00</td>
<td>0.07-0.10</td>
<td>0.0-2.9</td>
<td>0.5-1.0</td>
<td>.17</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66-70</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Data Source Information

Soil Survey Area: Santa Cruz County, California
Survey Area Data: Version 5, Dec 12, 2007
PROPOSED SITE SOIL MAP
MAP LEGEND

Area of Interest (AOI)
- Area of Interest (AOI)

Soils
- Soil Map Units

Special Point Features
- Blowout
- Borrow Pit
- Clay Spot
- Closed Depression
- Gravel Pit
- Gravelly Spot
- Landfill
- Lava Flow
- Marsh
- Mine or Quarry
- Miscellaneous Water
- Perennial Water
- Rock Outcrop
- Saline Spot
- Sandy Spot
- Severely Eroded Spot
- Sinkhole
- Slide or Slip
- Sodic Spot
- Spoil Area
- Stony Spot
- Very Stony Spot
- Wet Spot
- Other

Special Line Features
- Gully
- Short Steep Slope
- Other

Political Features
- Municipalities
- Cities
- Urban Areas

Water Features
- Oceans
- Streams and Canals

Transportation
- Rails
- Interstate Highways
- US Routes
- State Highways
- Local Roads
- Other Roads

MAP INFORMATION

Original soil survey map sheets were prepared at publication scale. Viewing scale and printing scale, however, may vary from the original. Please rely on the bar scale on each map sheet for proper map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 10N

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Santa Cruz County, California
Survey Area Data: Version 5, Dec 12, 2007

Date(s) aerial images were photographed: 10/30/1991

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Ben Lomond-Felton complex, 50 to 75 percent slopes</td>
<td>2.1</td>
<td>14.5%</td>
</tr>
<tr>
<td>135</td>
<td>Elkhorn sandy loam, 15 to 30 percent slopes</td>
<td>1.3</td>
<td>9.0%</td>
</tr>
<tr>
<td>159</td>
<td>Pfeiffer gravelly sandy loam, 15 to 30 percent slopes</td>
<td>11.2</td>
<td>76.4%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest (AOI)		

	14.6	100.0%
SOIL AVAILABLE WATER CAPACITY
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Map Units

Soil Ratings

<= 0.09

> 0.09 AND <= 0.15

Not rated or not available

Political Features

Municipalities

Cities

Urban Areas

Water Features

Oceans

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

State Highways

Local Roads

Other Roads

MAP INFORMATION

Original soil survey map sheets were prepared at publication scale. Viewing scale and printing scale, however, may vary from the original. Please rely on the bar scale on each map sheet for proper map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 10N

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Santa Cruz County, California
Survey Area Data: Version 5, Dec 12, 2007

Date(s) aerial images were photographed: 10/30/1991

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Available Water Capacity

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters per centimeter)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Ben Lomond-Felton complex, 50 to 75 percent slopes</td>
<td>0.15</td>
<td>2.1</td>
<td>14.5%</td>
</tr>
<tr>
<td>135</td>
<td>Elkhorn sandy loam, 15 to 30 percent slopes</td>
<td>0.15</td>
<td>1.3</td>
<td>9.0%</td>
</tr>
<tr>
<td>159</td>
<td>Pfeiffer gravelly sandy loam, 15 to 30 percent slopes</td>
<td>0.09</td>
<td>11.2</td>
<td>76.4%</td>
</tr>
<tr>
<td></td>
<td>Totals for Area of Interest (AOI)</td>
<td></td>
<td>14.6</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Description

Available water capacity (AWC) refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in centimeters of water per centimeter of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure, with corrections for salinity and rock fragments. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. It is not an estimate of the quantity of water actually available to plants at any given time.

Available water supply (AWS) is computed as AWC times the thickness of the soil. For example, if AWC is 0.15 cm/cm, the available water supply for 25 centimeters of soil would be 0.15 x 25, or 3.75 centimeters of water.

For each soil layer, AWC is recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

Rating Options

Units of Measure: centimeters per centimeter

Aggregation Method: Dominant Component
Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Component" returns the attribute value associated with the component with the highest percent composition in the map unit. If more than one component shares the highest percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher attribute value should be returned in the case of a percent composition tie.

The result returned by this aggregation method may or may not represent the dominant condition throughout the map unit.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Interpret Nulls as Zero: No

This option indicates if a null value for a component should be converted to zero before aggregation occurs. This will be done only if a map unit has at least one component where this value is not null.

Layer Options: All Layers
For an attribute of a soil horizon, a depth qualification must be specified. In most cases it is probably most appropriate to specify a fixed depth range, either in centimeters or inches. The Bottom Depth must be greater than the Top Depth, and the Top Depth can be greater than zero. The choice of “inches” or “centimeters” only applies to the depth of soil to be evaluated. It has no influence on the units of measure the data are presented in.

When "Surface Layer" is specified as the depth qualifier, only the surface layer or horizon is considered when deriving a value for a component, but keep in mind that the thickness of the surface layer varies from component to component.

When "All Layers" is specified as the depth qualifier, all layers recorded for a component are considered when deriving the value for that component.

Whenever more than one layer or horizon is considered when deriving a value for a component, and the attribute being aggregated is a numeric attribute, a weighted average value is returned, where the weighting factor is the layer or horizon thickness.
SOIL DEPTH-TO-WATER TABLE
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

0 - 25

25 - 50

50 - 100

100 - 150

150 - 200

> 200

Political Features

Municipalities

Cities

Urban Areas

Water Features

Oceans

Streams and Canals

Transportation

Rails

Rocks

Interstate Highways

US Routes

State Highways

Local Roads

Other Roads

MAP INFORMATION

Original soil survey map sheets were prepared at publication scale. Viewing scale and printing scale, however, may vary from the original. Please rely on the bar scale on each map sheet for proper map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 10N

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Santa Cruz County, California
Survey Area Data: Version 5, Dec 12, 2007

Date(s) aerial images were photographed: 10/30/1991

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Depth to Water Table

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating (centimeters)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Ben Lomond-Felton complex, 50 to 75 percent slopes</td>
<td>>200</td>
<td>2.1</td>
<td>14.5%</td>
</tr>
<tr>
<td>135</td>
<td>Elkhorn sandy loam, 15 to 30 percent slopes</td>
<td>>200</td>
<td>1.3</td>
<td>9.0%</td>
</tr>
<tr>
<td>159</td>
<td>Pfeiffer gravelly sandy loam, 15 to 30 percent slopes</td>
<td>>200</td>
<td>11.2</td>
<td>76.4%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest (AOI) | 14.6 | 100.0%

Description

"Water table" refers to a saturated zone in the soil. It occurs during specified months. Estimates of the upper limit are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

This attribute is actually recorded as three separate values in the database. A low value and a high value indicate the range of this attribute for the soil component. A "representative" value indicates the expected value of this attribute for the component. For this soil property, only the representative value is used.

Rating Options

Units of Measure: centimeters

Aggregation Method: Dominant Component

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.
The aggregation method "Dominant Component" returns the attribute value associated with the component with the highest percent composition in the map unit. If more than one component shares the highest percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher attribute value should be returned in the case of a percent composition tie.

The result returned by this aggregation method may or may not represent the dominant condition throughout the map unit.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Lower

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.

Interpret Nulls as Zero: No

This option indicates if a null value for a component should be converted to zero before aggregation occurs. This will be done only if a map unit has at least one component where this value is not null.

Beginning Month: January

Ending Month: December
SOIL DRAINAGE CLASS
Drainage Class—Santa Cruz County, California
(Soil Rating for Infiltration)

Natural Resources
Conservation Service
Web Soil Survey 2.0
National Cooperative Soil Survey
6/26/2008
Page 1 of 4
Original soil survey map sheets were prepared at publication scale. Viewing scale and printing scale, however, may vary from the original. Please rely on the bar scale on each map sheet for proper map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 10N

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Santa Cruz County, California
Survey Area Data: Version 5, Dec 12, 2007
Date(s) aerial images were photographed: 10/30/1991

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Drainage Class

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Ben Lomond-Felton complex, 50 to 75 percent slopes</td>
<td>Well drained</td>
<td>2.1</td>
<td>14.5%</td>
</tr>
<tr>
<td>135</td>
<td>Elkhorn sandy loam, 15 to 30 percent slopes</td>
<td>Well drained</td>
<td>1.3</td>
<td>9.0%</td>
</tr>
<tr>
<td>159</td>
<td>Pfeiffer gravelly sandy loam, 15 to 30 percent slopes</td>
<td>Well drained</td>
<td>11.2</td>
<td>76.4%</td>
</tr>
<tr>
<td></td>
<td>Totals for Area of Interest (AOI)</td>
<td></td>
<td>14.6</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Description

"Drainage class (natural)" refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized—excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."

Rating Options

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.
The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie.

The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.
SOIL HYDROLOGIC SOIL GROUP
MAP LEGEND

Area of Interest (AOI)

Soils

Soil Ratings

Political Features

Water Features

Transportation

MAP INFORMATION

Original soil survey map sheets were prepared at publication scale. Viewing scale and printing scale, however, may vary from the original. Please rely on the bar scale on each map sheet for proper map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 10N

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Santa Cruz County, California
Survey Area Data: Version 5, Dec 12, 2007
Date(s) aerial images were photographed: 10/30/1991

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group–Santa Cruz County, California

Natural Resources Conservation Service
Web Soil Survey 2.0
National Cooperative Soil Survey

6/26/2008
Page 2 of 4
Hydrologic Soil Group

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Ben Lomond-Felton complex, 50 to 75 percent slopes</td>
<td>B</td>
<td>2.1</td>
<td>14.5%</td>
</tr>
<tr>
<td>135</td>
<td>Elkhorn sandy loam, 15 to 30 percent slopes</td>
<td>B</td>
<td>1.3</td>
<td>9.0%</td>
</tr>
<tr>
<td>159</td>
<td>Pfeiffer gravelly sandy loam, 15 to 30 percent slopes</td>
<td>B</td>
<td>11.2</td>
<td>76.4%</td>
</tr>
</tbody>
</table>

Totals for Area of Interest (AOI) 14.6 100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.
Rating Options

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie.

The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Lower

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.
SOIL RATING FOR INFILTRATION
Original soil survey map sheets were prepared at publication scale. Viewing scale and printing scale, however, may vary from the original. Please rely on the bar scale on each map sheet for proper map measurements.

Source of Map: Natural Resources Conservation Service
Coordinate System: UTM Zone 10N

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Santa Cruz County, California
Survey Area Data: Version 5, Dec 12, 2007

Date(s) aerial images were photographed: 10/30/1991

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Disposal of Wastewater by Rapid Infiltration

Disposal of Wastewater by Rapid Infiltration—Summary by Map Unit — Santa Cruz County, California

<table>
<thead>
<tr>
<th>Map unit symbol</th>
<th>Map unit name</th>
<th>Rating</th>
<th>Component name (percent)</th>
<th>Rating reasons (rating values)</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Ben Lomond-Felton complex, 50 to 75 percent slopes</td>
<td>Very limited</td>
<td>BEN LOMOND (35%)</td>
<td>Depth to bedrock (1.00)</td>
<td>2.1</td>
<td>14.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slow water movement (0.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FELTON (35%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slow water movement (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Depth to bedrock (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Elkhorn sandy loam, 15 to 30 percent slopes</td>
<td>Very limited</td>
<td>ELKHORN (85%)</td>
<td>Slope (1.00)</td>
<td>1.3</td>
<td>9.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slow water movement (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Pfeiffer gravelly sandy loam, 15 to 30 percent slopes</td>
<td>Very limited</td>
<td>PFEIFFER (85%)</td>
<td>Slope (1.00)</td>
<td>11.2</td>
<td>76.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Depth to bedrock (1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slow water movement (0.32)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals for Area of Interest (AOI)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres in AOI</td>
<td>14.6</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Disposal of Wastewater by Rapid Infiltration—Summary by Rating Value

<table>
<thead>
<tr>
<th>Rating</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very limited</td>
<td>14.6</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Description

Rapid infiltration of wastewater is a process in which wastewater applied in a level basin at a rate of 4 to 120 inches per week percolates through the soil. The wastewater may eventually reach the ground water. The application rate commonly exceeds the rate needed for irrigation of cropland. Vegetation is not a necessary part of the treatment; thus, the basins may or may not be vegetated. The thickness of the soil material needed for proper treatment of the wastewater is more than 72 inches. As a result, geologic and hydrologic investigation is needed to ensure proper design and performance and to determine the risk of ground-water pollution.

Soil properties are important considerations in areas where soils are used as sites for the treatment and disposal of organic waste and wastewater. Selection of soils with properties that favor waste management can help to prevent environmental damage.

Municipal wastewater is the waste stream from a municipality. It contains domestic waste and may contain industrial waste. It may have received primary or secondary treatment. It is rarely untreated sewage. Food-processing wastewater results from the preparation of fruits, vegetables, milk, cheese, and meats for public consumption. In places it is high in content of sodium and chloride. The effluent in lagoons and storage ponds is from facilities used to treat or store food-processing wastewater or domestic or animal waste. Domestic and food-processing wastewater is very dilute, and the effluent from the facilities that treat or store it commonly is very low in content of carbonaceous and nitrogenous material; the content of nitrogen commonly ranges from 10 to 30 milligrams per liter. The wastewater from animal waste treatment lagoons or storage ponds, however, has much higher concentrations of these materials, mainly because the manure has not been diluted as much as the domestic waste. The content of nitrogen in this wastewater generally ranges from 50 to 2,000 milligrams per liter. When wastewater is applied, checks should be made to ensure that nitrogen, heavy metals, and salts are not added in excessive amounts.

The ratings are based on the soil properties that affect the risk of pollution and the design, construction, and performance of the system. Depth to a water table, ponding, flooding, and depth to bedrock or a cemented pan affect the risk of pollution and the design and construction of the system. Slope, stones, and cobbles also affect design and construction. Saturated hydraulic conductivity (Ksat) and reaction affect performance. Permanently frozen soils are unsuitable for waste treatment.

The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect agricultural waste management. "Not limited" indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. "Somewhat limited" indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. "Very limited" indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or
expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Rating Options

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie.

The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

Tie-break Rule: Higher

The tie-break rule indicates which value should be selected from a set of multiple candidate values, or which value should be selected in the event of a percent composition tie.